

Features

- RoHS compliant
- Compliant with Fast Ethernet standard
- Industry standard small form pluggable (SFP) package
- Duplex LC connector
- Differential LVPECL inputs and outputs
- Single power supply 3.3V
- TTL signal detect indicator
- Hot Pluggable
- Class 1 laser product complies with EN 60825-1

Application

- Distributed multi-processing
- Switch to switch interface
- High speed I/O for file server
- Bus extension application
- Channel extender, data storage

Ordering Information

PART NUMBER	INPUT/OUTPUT	SIGNAL DETECT	VOLTAGE	TEMPERATURE
FPM-107	AC/AC	TTL	3.3V	-10°C to 70°C

Absolute Maximum Ratings

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTE
Storage Temperature	T_S	-40	85	°C	
Supply Voltage	Vcc	-0.5	4.0	V	
Input Voltage	V_{IN}	-0.5	Vcc	V	
Output Current	I_o		50	mA	
Operating Current	I_{OP}		400	mA	

Recommended Operating Conditions

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTE
Case Operating Temperature	T_C	-10	70	°C	
Supply Voltage	Vcc	3.1	3.5	V	
Supply Current	$I_{TX} + I_{RX}$		300	mA	

Transmitter Electro-optical Characteristics

 $Vcc = 3.1 \text{ V to } 3.5 \text{ V. } T_C = -10 \,^{\circ}\text{C} \text{ to } 70 \,^{\circ}\text{C}$

PARAMETER	SYMBOL	MIN	TYP.	MAX	UNITS	NOTE
Data Rate	В	10	155	200	Mb/s	
Output Optical Power	Dout	20		1.4	dBm	Avianaga
62.5/125 μm fiber	Pout	-20		-14	UDIII	Average
Output Optical Power	Pout	-23.5		-14	dBm	Average
$50/125 \mu m$ fiber	Тош	-23.3		-14	ubili	Average
Extinction Ratio	ER	10			dB	
Center Wavelength	λ_C	1270	1310	1380	nm	
Spectral Width (FWHM)	$\Delta \lambda$		Fig 1		nm	
Rise/Fall Time (10–90%)	$T_{r,f}$			3	ns	
Differential Input Voltage	V_{DIFF}	0.4		2.0	V	

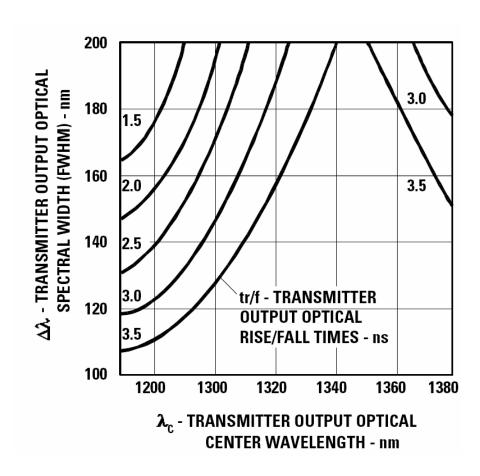
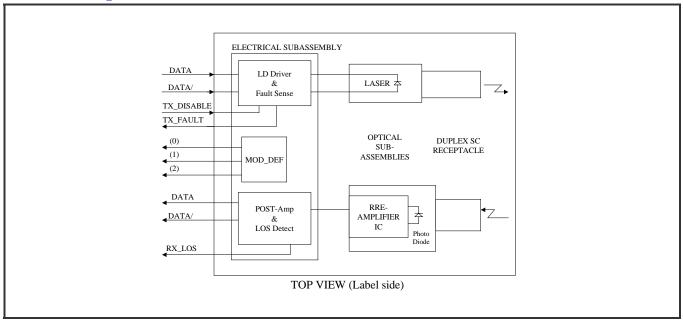


Fig 1 LED spectral width limit


Receiver Electro-optical Characteristics

 $Vcc = 3.1 \text{ V to } 3.5 \text{ V}, T_{\text{C}} = -10 \,^{\circ}\text{C} \text{ to } 70 \,^{\circ}\text{C}$

PARAMETER	SYMBOL	MIN	TYP.	MAX	UNITS	NOTE
Data Rate	В	10	155	200	Mb/s	
Optical Input Power -maximum	P_{IN}	-8			dBm	Note 1
Optical Input Power –minimum (Sensitivity)	P_{IN}			-31	dBm	Note 1
Operating Center Wavelength	λ_C	1260		1600	nm	
Data Output Rise, Fall Time (10%~90%)	$T_{r,f}$		1	2	ns	
Loss of Signal-Asserted	P_A			-32	dBm	Average
Loss of Signal-Deasserted	P_D	-47			dBm	Average
Loss of Signal-Hysteresis	$P_A - P_D$	1.0			dB	
Differential Output Voltage	V_{DIFF}	0.5		1.8	V	
Receiver Loss of Signal Output Voltage-Low	RX_LOS _L	0		0.5	V	
Receiver Loss of Signal Output Voltage-High	RX_LOS_H	2.4		V_{CC}	V	

Note 1: The input data is at 155.52 Mbps, 2^{23} –1 PRBS data pattern with 72 "1"s and 72 "0"s inserted per the ITU-T recommendation G.958 Appendix 1. The receiver is guaranteed to provide output data with Bit Error Rate (BER) better than or equal to 1×10^{-10} .

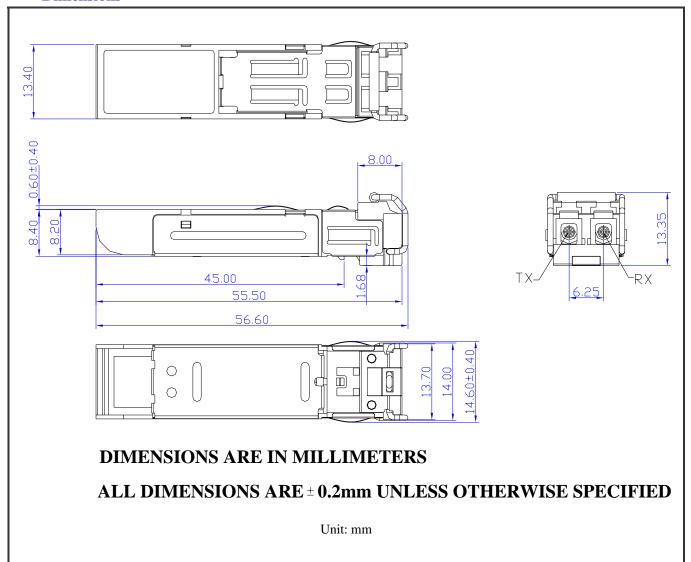
Block Diagram of Transceiver

Transmitter Section

The transmitter section consists of a 1310 nm LED in an eye safe optical subassembly (OSA) which mates to the fiber cable. The laser OSA is driven by a LD driver IC which converts differential input LVPECL logic signals into an analog laser driving current.

TX DISABLE

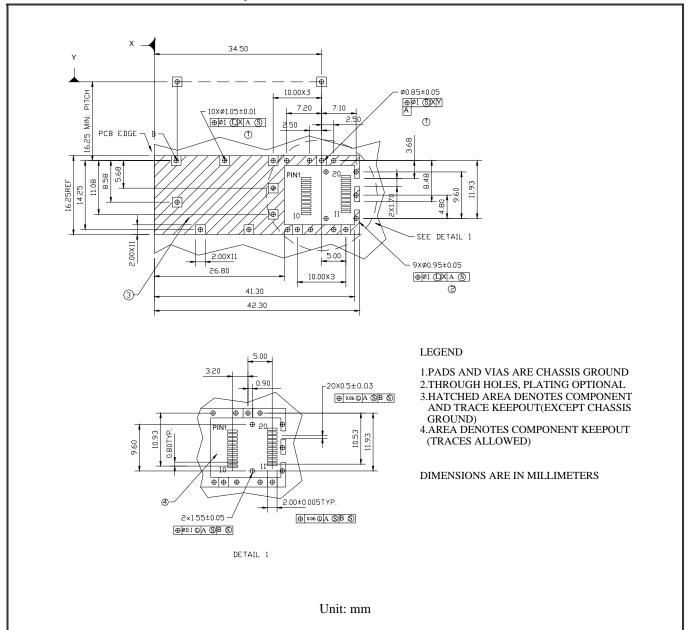
The TX_DISABLE signal is high (TTL logic "1") to turn off the laser output. The laser will turn on when TX_DISABLE is low (TTL logic "0").


Receiver Section

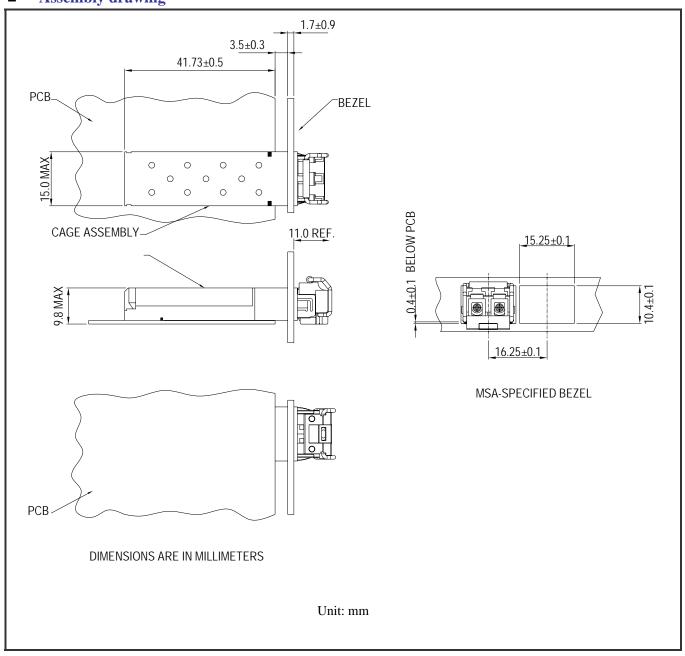
The receiver utilizes an InGaAs PIN photodiode mounted together with a trans-impedance preamplifier IC in an OSA. This OSA is connected to a circuit providing post-amplification quantization, and optical signal detection.

Receive Loss (RX_LOS)

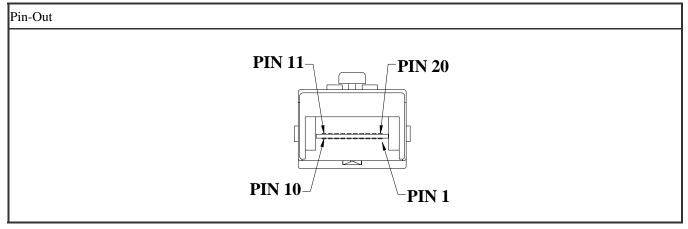
The RX_LOS is high (logic "1") when there is no incoming light from the companion transceiver. This signal is normally used by the system for the diagnostic purpose. The signal is operated in TTL level.


Dimensions

FPM-107 (RoHS compliant) **VOLKTEK 1310 nm Multi-mode Transceiver (2km)** Small Form Pluggable (SFP), 3.3V


155 Mbps ATM/125 Mbps Fast Ethernet

SFP host board mechanical layout



Assembly drawing

Pin Assignment

Pin	Signal Name	Description			
1	T_{GND}	Transmit Ground			
2	TX_FAULT	Transmit Fault			
3	TX_DISABLE	Transmit Disable			
4	MOD_DEF (2)	SDA Serial Data Signal			
5	MOD_DEF (1)	SCL Serial Clock Signal			
6	MOD_DEF (0)	TTL Low			
7	RATE SELECT	Open Circuit			
8	RX_LOS	Receiver Loss of Signal, TTL High, open collector			
9	R_{GND}	Receiver Ground			
10	R_{GND}	Receiver Ground			
11	R_{GND}	Receiver Ground			
12	RX-	Receive Data Bar, Differential PECL, ac coupled			
13	RX+	Receive Data, Differential PECL, ac coupled			
14	R_{GND}	Receiver Ground			
15	V_{CCR}	Receiver Power Supply			
16	V_{CCT}	Transmitter Power Supply			
17	T_{GND}	Transmitter Ground			
18	TX+	Transmit Data, Differential PCEL, ac coupled			
19	TX-	Transmit Data Bar, Differential PCEL, ac coupled			
20	T_{GND}	Transmitter Ground			

Eye Safety Mark

The LM3 series Multi-mode transceiver is a class 1 LED product. It complies with EN 60825-1 and FDA 21 CFR 1040.10 and 1040.11. In order to meet laser safety requirements the transceiver shall be operated within the Absolute Maximum Ratings.

All adjustments have been done at the factory before the shipment of the devices. No maintenance and user serviceable part is required. Tampering with and modifying the performance of the device will result in voided product warranty.

Required Mark

Class 1 Laser Product Complies with 21 CFR 1040.10 and 1040.11

Note: All information contained in this document is subject to change without notice.